Applications of Numerical Homotopy Continuation to Mechanism Design

Mark Plecnik
November 13, 2018

Nonlinear Algebra in Applications

Motivation

Inventing machines through computation...

Central Design Element

 Linkages:

Images courtesy UC Irvine Robotics \& Automation Laboratory

Typical Problem Statement

Trace a plane curve:

How to size a linkage?

A Simplified History

The simplest linkage:

...can go through 3 points

Result date: Unknown

A Simplified History

Four-bar (first discovered

Synthesis Objectives

Function generation: set of input angles and output angles; Motion generation: set of positions and orientations of a workpiece; Path generation: set of points along a trajectory in the workpiece.

Function Generation

Motion Generation

Synthesis Procedures

Literature Review

[1] B. Roth and F. Freudenstein, 1963. "Synthesis of path-generating mechanisms by numerical methods," J. of Engineering for Industry, 85(3):298-304.
[2] A. P. Morgan and A. J. Sommese, 1987. "A homotopy for solving general polynomial systems that respects m-homogeneous structures," Applied Mathematics and Computation, vol. 24, no. 2, pp. 101-113.
[3] C. W. Wampler, A. J. Sommese, and A. P. Morgan, 1992. "Complete solution of the ninepoint path synthesis problem for four-bar linkages," J. of Mech. Des. 114(1):153-159.
[4] A. K. Dhingra, J. C. Cheng, and D. Kohli, 1994. "Synthesis of six-link, slider-crank and fourlink mechanisms for function, path and motion generation using homotopy with m homogenization," J. of Mech. Des. 116(4):1122-1131.
[5] H.-J. Su, J. M. McCarthy, M. Sosonkina, and L. T. Watson, 2006. "Algorithm 857: POLSYS GLP—a Parallel General Linear Product Homotopy Code for Solving Polynomial Systems of Equations," ACM Trans. Math. Softw., vol. 32, no. 4, pp. 561-579.
[6] J. D. Hauenstein, A. J. Sommese, and C. Wampler, 2011. "Regeneration homotopies for solving systems of polynomials," Mathematics of Computation, vol. 80, no. 273, pp. 345377.
[7] D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, 2013. Numerically Solving Polynomial Systems With Bertini, SIAM Press, Philadelphia, PA, p. 25.

Function Generator

Coordinate input crank with output crank

Task (specified)
$(0,0),\left(\phi_{1}, \psi_{1}\right),\left(\phi_{2}, \psi_{2}\right),\left(\phi_{3}, \psi_{3}\right)$, $\left(\phi_{4}, \psi_{4}\right),\left(\phi_{5}, \psi_{5}\right),\left(\phi_{6}, \psi_{6}\right),\left(\phi_{7}, \psi_{7}\right)$, $\left(\phi_{8}, \psi_{8}\right),\left(\phi_{9}, \psi_{9}\right),\left(\phi_{10}, \psi_{10}\right)$
$Q=e^{i \phi} \quad S=e^{i \psi}$
Joint coordinates (unknowns)

$$
\begin{array}{ccccccc}
A & B & C & D & F & G & H
\end{array}
$$

Stephenson II

Rotation operators (extra unknowns)

$$
R=e^{i \rho} \quad T=e^{i \theta} \quad U=e^{i \mu}
$$

Loop equations (constraints)

$$
\begin{aligned}
& A+Q_{j}(C-A)+R_{j}(G-C)=B+S_{j}(D-B)+T_{j}(G-D), \\
& A+Q_{j}(C-A)+R_{j}(H-C)=B+S_{j}(F-B)+U_{j}(H-F), \quad j=1, \ldots, N-1
\end{aligned}
$$

Synthesis Equations

- Loop equations:

$$
A+Q_{j}(C-A)+R_{j}(G-C)=B+S_{j}(D-B)+T_{j}(G-D)
$$

$$
A+Q_{j}(C-A)+R_{j}(H-C)=B+S_{j}(F-B)+U_{j}(H-F),
$$

- Conjugate loop equations: $j=1, \ldots, N-1$

$$
\begin{gathered}
\bar{A}+\bar{Q}_{j}(\bar{C}-\bar{A})+\bar{R}_{j}(\bar{G}-\bar{C})=\bar{B}+\bar{S}_{j}(\bar{D}-\bar{B})+\bar{T}_{j}(\bar{G}-\bar{D}) \\
\bar{A}+\bar{Q}_{j}(\bar{C}-\bar{A})+\bar{R}_{j}(\bar{H}-\bar{C})=\bar{B}+\bar{S}_{j}(\bar{F}-\bar{B})+\bar{U}_{j}(\bar{H}-\bar{F}), \\
j=1, \ldots, N-1
\end{gathered}
$$

- Rotation operators:

$$
R_{j} \bar{R}_{j}=1, \quad T_{j} \bar{T}_{j}=1, \quad U_{j} \bar{U}_{j}=1, \quad j=1, \ldots N-1
$$

Stephenson II linkage

- Unknowns:

$$
\begin{array}{l|}
\begin{array}{c}
\text { Unknowns: } \\
\text { there are } 10+6(N-1)
\end{array} \\
\langle C, \bar{C}, D, \bar{D}, F, \bar{F}, G, \bar{G}\rangle,< \\
\left\langle R_{j}, \bar{R}_{j}, T_{j}, \bar{T}_{j}, U_{j}, \bar{U}_{j}\right\rangle, \quad j=1, \ldots N-1
\end{array}
$$

System square for $N=11$, 70 eqns and unknowns, degree $=1.18 \times 10^{21}$

Algebraic Reduction

$$
\begin{aligned}
& A+Q_{j}(C-A)+R_{j}(G-C)=B+S_{j}(D-B)+T_{j}(G-D), \quad A+Q_{j}(C-A)+R_{j}(H-C)=B+S_{j}(F-B)+U_{j}(H-F), \\
& \bar{A}+\bar{Q}_{j}(\bar{C}-\bar{A})+\bar{R}_{j}(\bar{G}-\bar{C})=\bar{B}+\bar{S}_{j}(\bar{D}-\bar{B})+\bar{T}_{j}(\bar{G}-\bar{D}), \\
& \text { These unknowns } \\
& \text { are eliminated: } \\
& R_{j}, \bar{R}_{j}, \quad T_{j}, \bar{T}_{j}, \quad U_{j}, \bar{U}_{j}, \\
& T_{j} \bar{T}_{j}=1 \\
& \bar{A}+\bar{Q}_{j}(\bar{C}-\bar{A})+\bar{R}_{j}(\bar{H}-\bar{C})=\bar{B}+\bar{S}_{j}(\bar{F}-\bar{B})+\bar{U}_{j}(\bar{H}-\bar{F}), \\
& U_{j} \bar{U}_{j}=1 \\
& {\left[\begin{array}{ll}
a \bar{b}_{j} & \bar{a} b_{j} \\
c \bar{d}_{j} & \bar{c} d_{j}
\end{array}\right]\left\{\begin{array}{l}
R_{j} \\
\bar{R}_{j}
\end{array}\right\}=\left\{\begin{array}{l}
f \bar{f}-a \bar{a}-b_{j} \bar{b}_{j} \\
g \bar{g}-c \bar{c}-d_{j} \bar{d}_{j}
\end{array}\right\},} \\
& R_{j} \bar{R}_{j}=1 \\
& \left(a \bar{b}_{j}\left(g \bar{g}-c \bar{c}-d_{j} \bar{d}_{j}\right)-c \bar{d}_{j}\left(f \bar{f}-a \bar{a}-b_{j} \bar{b}_{j}\right)\right)\left(\bar{a} b_{j}\left(g \bar{g}-c \bar{c}-d_{j} \bar{d}_{j}\right)-\bar{c} d_{j}\left(f \bar{f}-a \bar{a}-b_{j} \bar{b}_{j}\right)\right)+\left(a \bar{b}_{j} \bar{c} d_{j}+\bar{a} b_{j} c \bar{d}_{j}\right)^{2}=0 \\
& a=G-C, \quad b_{j}=A-B+Q_{j}(C-A)-S_{j}(D-B), \quad f=G-D, \\
& c=H-C, \quad d_{j}=A-B+Q_{j}(C-A)-S_{j}(F-B), \quad g=H-F \\
& \text { in } 10 \text { unknowns: } \\
& j=1, \ldots, 10
\end{aligned}
$$

Degree of the Synthesis Equations

Synthesis equations:

$$
\left(a \bar{b}_{j}\left(g \bar{g}-c \bar{c}-d_{j} \bar{d}_{j}\right)-c \bar{d}_{j}\left(f \bar{f}-a \bar{a}-b_{j} \bar{b}_{j}\right)\right)\left(\bar{a} b_{j}\left(g \bar{g}-c \bar{c}-d_{j} \bar{d}_{j}\right)-\bar{c} d_{j}\left(f \bar{f}-a \bar{a}-b_{j} \bar{b}_{j}\right)\right)+\left(a \bar{b}_{j} \bar{c} d_{j}+\bar{a} b_{j} c \bar{d}_{j}\right)^{2}=0
$$

$$
j=1, \ldots, 10
$$

- Goal: To find all of the solutions $\langle C, \bar{C}, D, \bar{D}, F, \bar{F}, G, \bar{G}, H, \bar{H}\rangle$ of the synthesis equations
- Each polynomial is degree 8
- How many roots?
- Using Bezout's Theorem:

$$
8^{10}=1.07 \times 10^{9}
$$

- Using a multihomogeneous grouping:

$$
\langle C, D, F, G, H\rangle,\langle\bar{C}, \bar{D}, \bar{F}, \bar{G}, \bar{H}\rangle
$$

- Solution method: Polynomial Homotopy Continuation

Polynomial Homotopy Continuation

Regeneration homotopy: more sophisticated approach

Types of Solutions

- Polynomial homotopy attempts to find ALL of the roots of a system, including:
- Roots at infinity
- Finite roots
- Nonsingular roots

- Singular roots

The majority of paths track to these. Limited by multihomogeneous homotopy.
Discarded quickly by regeneration.
Handled efficiently with projective coordinates.

This is what we desire. In this example, less than $\mathbf{1 \%}$ of $264,241,152$ roots track to these.

Discarded quickly by regeneration.

- Target system solved with regeneration homotopy
- Used the Bertini Homotopy Software
- 24,822,328 paths tracked
- 1,521,037 finite, nonsingular solutions found
- 311 hrs on $256 \times 2.2 \mathrm{GHz}$

Parameter Homotopy

The General Strategy for Solving Families of Polynomial Systems

1. Find all solutions for a numerically general system by any means possible

- Regeneration homotopy
- Multihomogeneous homotopy

Computationally expensive:
311 hours for a single solve
Regen tracked 24,822,328 paths
Found 1,521,037 solutions

- Non-homotopy methods

2. Use the results from step 1 as start points for a homotopy that solves a specific system

Computationally efficient:
2 hours per solve
Tracked 1,521,037 paths

- Avoids endpoints at infinity

Once a complete solution to a system is found, we can find the solutions to similar systems fast!

Stephenson III Function Generation

- Stephenson III function generation
- Degree: 55,050,240 for 11 positions
- Size of general solution set: 834,441
- Initial computation: 40 hrs on $512 \times 2.6 \mathrm{GHz}$ (multihomogeneous homotopy)
- Proceeding computations: 50 min on $64 \times 2.2 \mathrm{GHz}$ (parameter homotopy)
- Design of torque cancelling linkages
- By placing a linear torsion spring on one end, a
 function generator can be synthesized to create a specified torque or stiffness profile

Stroke Rehabilitation Application

- Applications for torque cancelling include stroke

Results

Biomimetic Wing Motion - Joint Angles of the Black-billed magpie

(

Biomimetic Human Walking Gait - Planar Joint Angles of Hip, Knee, and Ankle

Constrained RR Method

1. Begin by specifying an RR chain
2. Select a set of 11 points to move the RR chain through

Example

j	x	y
0	-5.160	-83.957
1	8.346	-84.026
2	21.993	-83.632
3	32.259	-82.128
4	33.018	-79.911
5	16.497	-73.889
6	-6.363	-62.120
7	-28.276	-74.865
8	-33.406	-80.964
9	-27.733	-83.440
10	-17.440	-84.032

Stephenson Path Generators

- Goal: Find dimensions of Stephenson linkages so that they move a trace point through 11 points
- Formulated as the synthesis of an RR chain constrain by a Stephenson function

SI

SII

SII

SIII generator

- Solve inverse kinematics of RR chain to find joint angles
- Solve for function generators that constrain those joint angles

Design Exploration

Exploration of other gaits

Prototyping a robot

- A leg design was selected and manufactured as a flexure linkage

Pantograph linkages replaces belts

- Lasercut polypropylene, each leg $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$
- Robot length 30 cm

The Design Approach

Define Requirements

Required Behaviors

1. Traces a straight line
2. Long stroke
3. Input pivot near line-of-action
4. Compact dimensions
5. Input link rotates over large range
6. Low mech. adv. at top of stroke
7. Constant ground reaction force
8. Angular momentum balanced

The Design Approach

Generate An Atlas of Designs

The Design Approach

A Simplified History

Four-bar (first discovered

Stephenson II Timed Curve

Task
$\left(0, P_{0}\right),\left(\phi_{1}, P_{1}\right),\left(\phi_{2}, P_{2}\right),\left(\phi_{3}, P_{3}\right)$, $\left(\phi_{4}, P_{4}\right),\left(\phi_{5}, P_{5}\right),\left(\phi_{6}, P_{6}\right),\left(\phi_{7}, P_{7}\right)$

Coordinate input crank with output point

Stephenson II Timed Curve

Joint coordinates

Rotation operators

$$
Q=e^{i \phi} \quad R=e^{i \rho} \quad S=e^{i \psi}
$$

$$
T=e^{i \theta} \quad U=e^{i \mu}
$$

Loop equations

$$
A+Q_{j}(C-A)+R_{j}(H-C)+U_{j}\left(P_{0}-H\right)=P_{j}
$$

$$
B+S_{j}(F-B)+U_{j}\left(P_{0}-F\right)=P_{j}
$$

$$
A+Q_{j}(C-A)+R_{j}(G-C)-B-S_{j}(D-B)-T_{j}(G-D)=0
$$

Stephenson II Timed Curve

Loop equations

$$
\begin{array}{lc}
A+Q_{j}(C-A)+R_{j}(H-C)+U_{j}\left(P_{0}-H\right)=P_{j} & \text { Unit rotations } \\
\bar{A}+\bar{Q}_{j}(\bar{C}-\bar{A})+\bar{R}_{j}(\bar{H}-\bar{C})+\bar{U}_{j}\left(\bar{P}_{0}-\bar{H}\right)=\bar{P}_{j} & R_{j} \bar{R}_{j}=1 \\
B+S_{j}(F-B)+U_{j}\left(P_{0}-F\right)=P_{j} & S_{j} \bar{S}_{j}=1 \\
\bar{B}+\bar{S}_{j}(\bar{F}-\bar{B})+\bar{U}_{j}\left(\bar{P}_{0}-\bar{F}\right)=\bar{P}_{j} & T_{j} \bar{T}_{j}=1 \\
A+Q_{j}(C-A)+R_{j}(G-C)-B-S_{j}(D-B)-T_{j}(G-D)=0 & U_{j} \bar{U}_{j}=1 \\
\bar{A}+\bar{Q}_{j}(\bar{C}-\bar{A})+\bar{R}_{j}(\bar{G}-\bar{C})-\bar{B}-\bar{S}_{j}(\bar{D}-\bar{B})-\bar{T}_{j}(\bar{G}-\bar{D})=0 &
\end{array}
$$

Extra substitutions

$$
\begin{array}{lr}
a=A \bar{H} & d=\frac{D-B}{F-B} \\
b=B \bar{F} & g=\frac{G-C}{H-C} \\
c=(C-A) \bar{H} & \\
k=g\left(P_{0}-H\right)-d\left(P_{0}-F\right)
\end{array}
$$

Stephensont|tinescarue

Synthesis Equations

$$
\begin{aligned}
& \beta_{j}+\bar{\beta}_{j}-P_{j} \bar{P}_{j}-P_{j} \overline{\mathcal{d}}_{\mathrm{d}}{ }_{\mathrm{gree}}=2 \quad j=1, \ldots, 7 \\
& \xi_{j}+\bar{\xi}_{j}-P_{j} \bar{P}_{j}-P_{j} \overline{\text { Zagree }}=2 \quad j=1, \ldots, 7 \\
& U_{j} k \bar{\zeta}_{j}+\bar{U}_{j} \bar{k} \zeta_{j}-\zeta_{j} \bar{\zeta}_{j}-k \bar{k}+{ }_{\text {aree }}=A \\
& (g(H-C)+C-d(\text { Fdegree },=-B)(\bar{g}(\bar{H}-\bar{C})+\bar{C}-\bar{d}(\bar{F}-\bar{B})-\bar{B})=0 \quad j=1, \ldots, 7 \\
& \begin{array}{llll}
a-\operatorname{deg}=\mathbf{2}=0 & b-\operatorname{deg}=\mathbf{2}=0 & c-(c \mathrm{deg}=\mathbf{2} \bar{H}=0 & \left.k-\operatorname{deg}_{0}=\mathbf{2}-H\right)+d\left(P_{0}-F\right)=0 \\
\bar{a}-\operatorname{deg}=\mathbf{2} 0 & \bar{b}-\operatorname{deg}=\mathbf{2}=0 & \bar{c}-(\overline{d e g}=\mathbf{2} \bar{A}) H=0 & \bar{k}-\overline{d e g}=\mathbf{2}-\bar{H})+\bar{d}\left(\bar{P}_{0}-\bar{F}\right)=0
\end{array} \\
& U_{\text {deg }}=21=0 \quad j=1, \ldots, 7 \\
& \text { total degree }=2^{7 \times 2^{7} \times 4^{7} \times 2^{8} \times 2^{7}} \\
& =8,796,093,022,208
\end{aligned}
$$

Spoiler Alert! Approx 1,500,000 finite roots

Intermediate expressions

$\beta_{j}=U_{j}\left(P_{0}\left(\bar{P}_{j}-\bar{A}-\bar{Q}_{j}(\bar{C}-\bar{A})\right)-\bar{P}_{j} H+\bar{a}+\bar{Q}_{j} \bar{c}\right)+Q_{j}(C-A)\left(\bar{P}_{j}-\bar{A}\right)+A\left(\bar{P}_{j}-\bar{C}-\bar{A}\right)+H\left(\bar{P}_{0}-\bar{C}\right)$
$\xi_{j}=U_{j}\left(P_{0}\left(\bar{P}_{j}-\bar{B}\right)-\bar{P}_{j} F+\bar{b}\right)+P_{j} \bar{B}+P_{0} \bar{F}-b$
$\zeta_{j}=A-B+Q_{j}(C-A)+g\left(P_{j}-A-Q_{j}(C-A)\right)-d\left(P_{j}-B\right)$

1,500,000

Sparse System

Start system

$\left(a_{1} x+a_{2} y+1\right)\left(a_{3} x+a_{4} y+1\right)\left(a_{5} x+a_{6} y+1\right)=0$
$\left(a_{7} x+a_{8} y+1\right)\left(a_{9} x+a_{10} y+1\right)\left(a_{11} x+a_{12} y+1\right)=0$
No. of roots: 9
Monomials: $\left\{x^{3}, y^{3}, x^{2} y, x y^{2}, x^{2}, y^{2}, x y, x, y, 1\right\}$

Target system
$c_{1} x^{3}+c_{2} x y+c_{3} y+1=0$
$c_{4} X^{3}+c_{5} x y+c_{6} y+1=0$
No. of roots: 4
Monomials: $\left\{x^{3}, x y, y, 1\right\}$

Expanded form:
$b_{1} x^{3}+b_{2} y^{3}+b_{3} x^{2} y+b_{4} x y^{2}+b_{5} x^{2}$ $+b_{6} y^{2}+b_{7} x y+b_{8} x+b_{9} y+1=0$
$b_{10} x^{3}+b_{11} y^{3}+b_{12} x^{2} y+b_{13} x y^{2}+b_{14} x^{2}$
$+b_{15} y^{2}+b_{16} x y+b_{17} x+b_{18} y+1=0$
** $a \& c$ coefficients are generic complex numbers

Start

Target

Sparse System

Start system

$$
\begin{aligned}
& \left(a_{1} x+a_{2} y+1\right)\left(a_{3} x+a_{4} y+1\right)\left(a_{5} x+a_{6} y+1\right)=0 \\
& \left(a_{7} x+a_{8} y+1\right)\left(a_{9} x+a_{10} y+1\right)\left(a_{11} x+a_{12} y+1\right)=0
\end{aligned}
$$

No. of roots: 9
Monomials: $\left\{x^{3}, y^{3}, x^{2} y, x y^{2}, x^{2}, y^{2}, x y, x, y, 1\right\}$

Recall Stephenson II example...

Start system
No. of roots: 8,796,093,022,208

No. of roots: 4
Monomials: $\left\{x^{3}, x y, y, 1\right\}$
Target system
$c_{1} x^{3}+c_{2} x y+c_{3} y+1=0$
$c_{4} X^{3}+c_{5} x y+c_{6} y+1=0$

Target system

No. of roots: 1,500,000

Random Startpoints

A randomly generated mechanism...

Its movement: Loop equations
Construct a start system with exactly the right monomials

Its dimensions: A
Provide a single solution to start system

Random Startpoints

Collecting Coupons

- The process of accumulating roots through FRG is analogous to randomly picking coupons out of a box.
- There are 6 unique different colored coupons in the box

Probability of picking a new color:
50\%

Red	
Orange	
Yellow	
Green	
Blue	
Violet	

FRG Root Collection

Expected no. of trials to obtain n of N roots

$$
T_{n}=N\left(H_{N}-H_{N-n}\right)
$$

FRG Estimation

Coupon collector model

Approximate coupon collector model

$$
T_{n} \approx N \ln \left(\frac{N}{N-n}\right)
$$

Estimation equation

Percentage of roots collected

New root success rate

$$
\begin{aligned}
& \hat{n}=\frac{n}{N} \\
& \alpha=\frac{n}{T_{n}}
\end{aligned}
$$

Stephenson II Timed Curve

Roots collected*

*Cognate structure reduced tracking requirements 50\%

Application

Flat terrain

Application

Greater strides would be useful
Longer flight phase

Design requirements for running:

- Cyclic motion
- Special mechanical advantage that pairs with an external spring
- Extra feature: Mech. adv. adjustability

Leg stroke
 region

Design Work Performed With This Result

Adjustment leads to higher powered behavior
(High power mode)

Low power mode $\quad 1 / 2$ speed High power mode

Low power mode

$1 / 16$ speed

High power mode

Wrap Up

- Homotopy solvers (Bertini) allow design space exploration for mechanisms
- Stochastically generating startpoints with certain properties can save a lot on computation
- Finite Root Generation scales approximately linearly by the actual number of finite roots (essentially exploiting sparse monomial structures)
- Many six-bar design problems still unsolved (but they are being zeroed in on)

Thank you!

